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Abstract

In many modern applications data is represented in the form of nodes and their relation-
ships, forming an information network. When nodes are described with a set of attributes we
have an attributed network. Nodes and their relationships tend to naturally form into commu-
nities or clusters, and discovering these communities is paramount to many applications.
Evaluating algorithms or comparing algorithms for automatic discovery of communities re-
quires networks with known structures. Synthetic generators of networks have been pro-
posed for this task but most solely focus on connectivity and their properties and overlook
attribute values and the network properties vis-a-vis these attributes. In this paper, we pro-
pose a new generator for attributed networks with community structure that dependably fol-
lows the properties of real world networks.

Introduction

A variety of present-day applications requires interrelated data with relationships between data
points. The structures in these interrelated data are typically modeled by a graph of intercon-
nected nodes, known as complex networks or sometimes social networks or information net-
works. Examples of such networks are citation or collaboration networks of scholars, or trust
and social networks of humans. Although drawn from a wide range of domains, most real
world networks exhibit common statistical properties, such as power law degree distribution,
and small world characteristic, which enable implementing a generic set of techniques for ana-
lyzing these networks [1].

One fundamental property of many real networks is that they tend to organize according to
an underlying modular structure [2]. These structures are known as communities and are com-
monly defined based on the dense connectivity between community members. Many commu-
nity mining methods have been proposed and are typically based solely on relationships
between nodes in the graph. Most of these methods validate their algorithms on standard
benchmarks for which the true communities are known but there are few and typically small
real world benchmarks with known communities available for this external evaluation of com-
munity detection algorithms. For this reason, synthetic benchmark generators have also been
designed but the current generators overlook some characteristics of the real networks [3]. For
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example, the commonly used benchmarks in community mining evaluations, are the synthetic
LFR benchmarks proposed in [4]. These benchmarks have been used as standard benchmarks
in external evaluation and comparison of community mining results [5-8]. However, as no-
ticed by [3, 9], the networks generated in these benchmarks fail to follow some very basic char-
acteristics of real world networks, such as the densification power laws and heavy-tailed
distribution. Moreover, the generators do not consider attributes of nodes. In real applications,
the data points are more than merely vertices, they are accompanied with their attribute values,
resulting in what is known as attributed networks [10] and, it has been shown that the commu-
nities depend both on relationships and attributes. This is the homophily effect [11]. In recent
years, new approaches considering the attributes and the relationships to discover communities
have been proposed. Nonetheless, their evaluation is a challenging issue since publicly available
real attributed networks with known communities are rare and difficult to obtain. In addition,
generators for synthetic attributed networks with communities are quasi non-existent.

Therefore we believe that there is a need for developing a more realistic benchmark genera-
tor to generate authentic networks with built-in community structures and attributed nodes,
faithfully following the known properties of real-world attributed networks and closely ensur-
ing intrinsic characteristics such as preferential attachment requiring nodes with high connec-
tivity to have a higher chance to attract links with other nodes, and homophily, the tendency of
nodes to associate with higher probability with nodes having similar attribute values. We pro-
pose herein a generator for attributed networks with community structure, show the parame-
ters of the model and highlight some of the experiments to demonstrate reliability and
flexibility of our model.

Section is dedicated to the state of the art, while the model is presented in Section. The ex-
periments are described in Section and Section concludes.

Related works

There are many generative network models proposed for real world networks [1, 12-15]. Here,
we survey commonly used generative network models, focusing on models that incorporate
built-in community structure, and/or attributes for the vertices.

Networks without attribute or communities

The classical Erdds-Rényi (ER) model [16] generates random graphs of a given size, where
edges are formed independently and with uniform probability. These graphs comply with the
small-world property observed in real world graphs. However, they have a binomial degree dis-
tribution and therefore are not scale-free. The generated ER graphs also have a relatively low
transitivity [17]. The Watts and Strogatz (WS) model [18] is another famous generator for
small world graphs. This model starts with a regular graph (ring lattice), then rewires links
with a probability . The WS model is therefore able to generate small world graphs with high
transitivity. The degree distribution, however, does not follow a power law, and therefore this
model is not scale-free.

The Barabasi-Albert (BA) model [19] is one of the most basic models that generates random
scale-free networks. Starting with an initial network, vertices are added at each step, while the
newly added vertex forms connections with the existing vertices according to the preferential
attachment. Although the generated BA graphs comply with macroscopic properties observed
in real networks, the evolution of networks in this model is not realistic as discussed by [20].
More specifically in the BA model, the probability of forming long-range edges is as likely as
local edges, whereas in real networks edges are formed locally.
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In [21, 22] the authors empirically observe that real networks become denser over time,
with the average degree increasing and the diameter decreasing in many cases. They propose
the Forest Fire (FF) model which exhibits these evolution patterns. In this model every new
vertex first connects randomly to an existing vertex called ambassador. Then, it recursively
forms a random number of connections with the neighbors of every vertex it connects to.

Other notable synthetic generators are the mathematical tractable models, such as the Sto-
chastic Kronecker Graph model [23], and its generalization, the Multifractal Network model
[24, 25]. These models generate networks with realistic properties, i.e., heavy-tailed degree dis-
tributions and high clustering coefficient, that can be mathematically proved. The recursive
generation process is based on a set of generating parameters, i.e., hierarchical categories as-
signed to vertices that determine their probability of forming an edge. These parameters can be
further fitted to a given real network.

Networks with Communities

The GN benchmark [26] is the first network generator proposed for evaluating community
mining algorithms. This benchmark is a graph of 128 vertices, with an expected degree of 16,
and is divided into four groups of equal sizes where the probabilities of the existence of a link
between a pair of vertices of the same group and of different groups are z;, and 1-z;, respec-
tively where z;, € [0, 1]. Since all the vertices have the same expected degree and equal commu-
nities size, this model is not accordant to real social network properties.

LFR benchmark [4] amends the GN benchmark by distributing the degrees according to a
power law. Similar to the GN benchmark, each vertex shares a fraction 1-y of its links with the
other vertices of its community and a fraction g with the other vertices of the network. An ex-
tension of this benchmark for overlapping communities is presented in [27].

The process of generating the commonly used LFR benchmarks [4] could be summarized
into two steps. In the first step, it generates a random network which has a power law degree
distribution by first assigning a degree to each vertex taken from the power law distribution,
and then linking vertices randomly. In the second step, it imposes a community structure on
the network by first determining the number of communities and their sizes, and then random-
ly assign vertices to the communities.

This generation process has two main issues. First, the original network is generated with a
very simple network model, i.e., the configuration model [28]. Therefore, although the net-
works generated by this model follow the power law degree distribution, they fail to follow
some other typical characteristics of real world networks. In particular, [29] shows that the gen-
erated LFR networks exhibit low transitivity and close to zero degree correlation. To remedy
this they proposed two variants of the LFR benchmarks [30] by replacing the configuration
model in the LFR with a more realistic network models, i.e., the preferential attachment model
of [19] and the evolutionary preferential attachment model of [31]. These modified bench-
marks have an improved realism, however they are less flexible as they have less parameters
compared to the original LFR generators.

The second issue with the LFR benchmark generators is enforcing communities later on the
network which is in contrary to their definition as the natural structure underlying the net-
works. Orman and Labatut also mention this fact that the rewiring process in general changes
the network structure chaotically, but leave it untackled [3]. Moussiades and Vakali further de-
scribe this issue as choosing a random clustering as the ground truth [9].

The block two-level Erdés-Rényi (BTER) model proposed in [32, 33], directly incorporates
communities in the generative model, whereas their networks are scale-free collections of ER
subgraphs as communities. The BTER starts with a preprocessing where vertices are distributed
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into communities and each vertex is assigned a degree and a clustering coefficient (the latter
determines the portion of between to within community links), which are input to the model.
Then in phase 1, local links are formed within each community according to a constant proba-
bility computed for that community, and in the second phase, between edges connect commu-
nities together. If the input degree distribution follows a power law, the resulted networks are
shown to be scale-free. The model presented in this article is similar to the BTER model, how-
ever, when forming long range edges between communities, it considers similarity of vertices
in terms of their attributes.

Networks with Attributes

Evidences of homophily in most real networks suggest that connections are formed with a bias
in favor of similar attributes of vertices (including their degrees). Some network generator
models assume that links between vertices are formed solely based on their attributes [34, 35].

To take into account this behavior, another possibility is to consider attributes as vertices
within an augmented network. Social-Attribute Network (SAN) proposed by [36] follows this
approach. They define SAN as a heterogeneous network consisting of vertices representing ei-
ther individues or attribute values. The attribute links connect the binary attributes to vertices
that posses that attribute value. They first empirically observe characteristics of such a model
(e.g. attribute degree distribution, social degree distribution) in a real network dataset (Google
+). Then they propose a generative process to synthesize SAN networks with similar character-
istics following attribute-augmented preferential attachment (the probability of an edge be-
tween a vertex # and a vertex v depends on the degree of vertex v as well as the number of
attributes u and v have in common) and attribute-augmented triangle-closing (randomly con-
necting u with its 2-hop social neighbors, where the hop could be through attribute vertices).

Another approach has been proposed in [37] using random typing. Each vertex corresponds
to a weighted random sequence of characters where two vertices are more likely to be con-
nected if they share a sequence of characters. This model allows to generate graphs having a re-
alistic structure, however, it is not possible to build two distinct vertices having the same set of
attributes. Moreover, the attributes are required to be discrete.

Networks with Communities and Attributes

Very few generators allow one to build a network having both a community structure and attri-
butes associated with the vertices. In [38] the author proposes a simple generation model in
which for each new vertex, its attributes and community membership are independently sam-
pled from a multinomial and normal distribution, respectively. It then forms specified number
of edges, where the probability of linking to an existing vertex depends on the multiplication of
(1) the degree of that vertex, (2) the attribute similarity of that vertex to the new vertex and (3)
the attribute similarity of the class of the first vertex to the class of the second vertex. While this
approach allows to accurately model several real networks properties, the homophily property
is somehow biased due to the multinomial distribution of the attributes. Indeed, vertices in a
given community are more likely to connect to only a few other communities (those having a
similar mean for the normal distribution), and will not being connected to most other
communities.

While not being dedicated to the generation of networks, several articles [39, 40] have pro-
posed graph models of networks with attributes. Given an existing graph, the objective is to dis-
cover parameters of the model fitting the real network structure and attribute distribution.
These latent parameters are used to infer knowledge from the graph, e.g., the community struc-
ture. However, while not being a straightforward task, these models can also be used to
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generate a new graph similar to an existing one using the discovered model parameters. A
study remains to be done to find which networks characteristics are captured by the models. In
[39] the authors propose a generative Bayesian model to learn the latent parameters of attribute
models and communities given the fact that graph and attributes of vertices are observed and
independent given community structure. Similarly, [40] propose a generative Bayesian model
for sampling clustered attributed networks, and infer clusters in such networks based on a vari-
ational approximation approach.

Given the interest of discovering communities in a social network where vertices are associ-
ated with attributes, we believe that a generator of networks following real networks properties
and allowing to assess the quality of the obtained results using a ground truth is valuable.

Model
Hypothesis

We provide a new attributed network with community structure generator. Such networks can
be represented by an attributed graph G = (V,&,.A), where Vis a set of vertices, £ a set of edges
and A a set of real attributes associated with the vertices such that each vertex v € Vis de-
scribed by an attribute value vector v4[10].

The network has a community structure if the nodes are grouped into sets densely con-
nected and relatively homogeneous regarding the attributes. We suppose that these communi-
ties are not overlapping and consequently, they define a partition P of Vsuch that (1) V(C,, C,)
€ PxP, CiNC, = P; (2) VC € P,C# B;and (3) Upep C = V.

The proposed attributed network with community structure generator is based on the
following hypothesis.

It respects the preferential attachment according to which new nodes prefer to join to the
more connected nodes existing in the network. Thus, each node is connected to an existing
node with a probability proportional to the number of links of the chosen node. Given this hy-
pothesis, our model can be considered as an extension of the Barabasi- Albert model: it leads to
scale-free networks characterized by a degree distribution with a heavy tail which can be ap-
proximated by a power law distribution such that the fraction of vertices P(k) having a degree k
follows P(k) ~ k™7 where y ranges typically between 2 and 3 [41]. However, as noticed in [20],
usually, notably in social networks, the actors do not have a global knowledge of the network.
Consequently, the preferential attachment model is more likely to be local.

The second hypothesis underlying our model is that the membership to a community de-
pends on the structural links and the attributes in such a way that firstly, there should be more
edges between two vertices belonging to a same community than between vertices from differ-
ent communities and secondly, two vertices belonging to the same community are likely to be
more similar in terms of attributes as two vertices belonging to different communities.

Finally, our model is based on the homophily hypothesis, according to which two vertices
are more likely to be connected if they share common characteristics and this property is veri-
fied inside the communities but also between communities [11, 42]. So, the more similar the
vertices, the more likely connected they are.

Model properties

Given these hypotheses, the proposed model allows us to generate attributed graphs having the
following properties.

P1. Local preferential attachment: The local preferential attachment states that a vertex is
more likely to create connections with vertices having a high degree and which are close [20].

PLOS ONE | DOI:10.1371/journal.pone.0122777  April 20,2015 5/21



@'PLOS ‘ ONE

Generating Attributed Networks with Communities

P2. Small world: This property indicates that most vertices can be reached from every other
through a small number of edges. According to [18], in a small world network, the average
shortest path length is proportional to the logarithm of the number of vertices. The diameter
can also be used to evaluate the small word property since it is defined as the maximum dis-
tance between any two vertices, where the distance is the minimum number of edges on the
path from one vertex to the other one. It has been shown that real networks exhibit very small
diameters, notably the well-known “six-degrees of separation” [43, 44].

P3. Community structure: A community structure appears when vertices can be grouped
in a way such that vertices in a group are more connected to vertices in the same group com-
pared to other vertices. While there is no formal definition of a network community, several
measures have been proposed to control the community structure. In this article, we consider
the modularity measure from [45]. Moreover, the average clustering coefficient from [18] is
given as an indication of the transivity in the network.

P4. Community homogeneity: This property occurs when the vertices inside a community
are more similar according to their attribute values compared to vertices in a different commu-
nity. To measure this property, one can use the within inertia ratio. Given P, a partition of ver-
tices and d(vy,,), the euclidean distance between the real attribute vectors associated with the
Y oepPed s, dvge)”

o)
of the vertices in C, P the weight of C and g is the center of gravity of all the vertices.

P5. Homophily: This property is verified in networks where similar vertices according to
their properties tend to be more connected than dissimilar vertices. To measure this property,
we adapted the test introduced by [46] for numeric attributes. This test compares an expected
homophily measure corresponding to the probability for two vertices to be similar with an ob-
served homophily measure defined as the probability that two linked vertices are similar. If the
expected measure is significantly less than the observed measure, then there is evidence
for homophily.

) . .
where g¢ is the center of gravity

vertices v; and v,, the within inertia ratio is

Model parameters

The previously described network properties can be controlled by the user using the model pa-
rameters summarized in Table 1.

Vertices: Each generated graph has a fixed number of vertices controlled by the parameter
N=V.

Table 1. Description of the generator parameters.

Parameter Description

N e N* Number of vertices

Eyex e N* Maximum within (community) edges added to a new vertex
Er e {0,... Ele Maximum between (community) edges added to a new vertex
MTE € N Minimum number of edges in the resulting graph
A=A{0y,...,0.4} A set of attribute descriptors, i.e., standard deviation.

K e N* Number of communities

6e0,1] Threshold for community attributes homogeneity

NbRep € N* Maximum number of community representatives

Description of the generator parameters

doi:10.1371/journal.pone.0122777.t001
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max

mer defines the maximum

Edges: Three parameters control the edge insertion. Parameter E
number of edges connecting a newly inserted vertex to other vertices in its community (i.e.,
within edges). To avoid disconnected vertices, E'* is required to be superior or equal to 1. On

the other hand, parameter E};** defines the maximum number of edges connecting a newly in-
serted vertex to vertices out of its community (i.e., between edges). To ensure a community
structure, E}e* must range between 0 and E”'+*. Note that when E”** equals to 0, the communi-
ties are completely disconnected. Finally, parameter MTE allows to set the minimal number of
edges in the graph and consequently to control the density of the network. To reach this
threshold, edges are inserted within the communities at the end of the process to reinforce the
community structure by triadic closure i.e. by increasing the number of three fully

connected vertices.

Attributes: The numeric attribute values associated with the vertices are generated accord-
ing to normal laws defined by two parameters: |.A|, the number of attributes and A, the set of
attribute descriptors. An attribute descriptor is a standard deviation 0,4, according which a
component of the attribute vector associated with the vertices is generated following a normal
law MV(0,0,4). Note that using centered values does not change the distance between the vertices,
so the mean is fixed to 0.

Communities: The number of communities is set using parameter K. Parameter 6 allows to
associate a vertex with a random community instead of a community formed by vertices shar-
ing similar attributes. It models the hypothesis that community selection is not necessarily
based on available attributes and thus seems stochastic. A low value of 6 will generate highly
homogeneous communities, while on the other hand, a higher value will decrease the commu-
nity homogeneity. Finally, to reduce algorithm complexity, a set of representatives is built for
each community to compare similarity with newcomers. Parameter NbRep defines the maxi-
mal number of representatives for each community.

Algorithm

Our generator is named Algorithm 1 which stands for Attributed Networks with Commu-

nities Generator. It returns:

o An attributed graph G = (V,£,.A), where Vis a set of vertices, £ a set of edges, A a set of attri-
butes and where v, denotes the attribute vector associated with a vertex v € V;

« A partition P of V, corresponding to the generated attributed network, such that (1) v(C,,C,)
€ PxP,CiNC,=0; 2)VCe P,C#P;and (3) U C=V
cep

Algorithm description. The main algorithm is divided into four parts. Vertices and attri-
bute values are first generated, then communities are initialized. Vertices are then added by
batch into the graph and finally an optional step allows to control the density of the network in
ensuring a minimum number of edges (MTE). The vertex insertion step is also split into two
subparts: community selection and edge insertion.

1. Vertices and attribute generation: An arbitrary set of N vertices is firstly generated (line
1, Algorithm Algorithm 1 in Table 2). For each of these vertices, |.A| real attribute values are
generated according to normal distributions whose standard deviations are given by the attri-
bute parameter A (lines 2-3, Algorithm Algorithm 1 in Table 2).

2. Community initialization: This initialization builds a first set of representatives of the
communities, expected to have well separated attribute values (cf. property P4). It is described
in Algorithm Algorithm 2 in Table 3 and the call to this algorithm is performed at line 4 in
Algorithm Algorithm 1 in Table 2. First, a random sample V;,;; of K x NbRep vertices is
drawn from Vto build the initial communities (line 1, Algorithm Algorithm 2 in Table 3).
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Table 2. Algorithm1.

Input: N, ETe, Erex MTE, A, K, 6, NbRep
Output: An attributed graph G = (V,£,.4)
Output: A partition P ={Cy,...,Cx} of V
{Vertices and attributes generation}
1: V «— an arbitrary set of N vertices
2:forv e Vdo
3: for A € Adov, «— MN0,0,4)
{Community initialization}
4: Algorithm 2()
5:forCe PdoC.rep — C
6: Vioada — WJc ¢ »C
{Batch vertex insertion}
7: while Vioagq # 0 do

8: forv e Sample(Vioada,Randuni({1,. . .,|Vioaddl})) do

9: if Randy,([0,1[) < 6 then C — Randy,{(P)
10: else C < arg min dist(v,C'.rep)

CeP
11: Algorithm 3 (v, C)
12: C—CcU{v}
13: Vioadd < Vioada\ {V}

14: for C € P do C.rep — Sample(C, min(|C|, NbRep))

{Final edges insertion}
15: MTE «— min(MTE,Y ., %)
16: while |€] < MTE do
17: v < Randy,{(V)

18:  Epi « {{v1,Va} | v1,V2 € neiguin(v)Avy # va\E

19: & — EURandypi(Exr)
Algorithm1

doi:10.1371/journal.pone.0122777.t002

Table 3. Algorithm 2.

{Build initial communities}
1: Vit — Sample(V,K x NbRep)
2: P — K Medoids(Vn;s,K)
3: MinRep — rgllpl c|
4:forC € Pdo

{Resize the communities}
5: g < Center of gravity of the elements in C
6: C«< argmin > d(v,g)

¢cc  veor
| C' |= MinRep

{Add initial within edges}
7. forveCdo
8: E,., <— Rand,,;({1,...,EJ¥})

9: repeat E,,;, times

10: v/ «— Randyni(C\{v})
11: E— EU{{v,V}}

12: end repeat

Algorithm 2

doi:10.1371/journal.pone.0122777.t003
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A KMedoids [47] clustering is then performed on these vertices to build K clusters but another
clustering method could be used. The distance used in the KMedoids algorithm is euclidean.
Each cluster provided by KMedoids corresponds to a community seed. As the generated clus-
ters do not necessarily have the same cardinality, some vertices may be removed to ensure that
each cluster has a cardinality equal to the smallest cluster generated (line 3, Algorithm Algo-
rithm 2 in Table 3). Removed vertices are selected according to their distance to the cluster
center of gravity to improve the homogeneity of the initial communities (cf. property P4) (line
5-6, Algorithm Algorithm 2 in Table 3). Edges are then inserted between vertices belonging
to the same community to ensure a community structure (cf. property P3) (lines 8-12, Algo-
rithm Algorithm 2 in Table 3). The number of within edges of a vertex is chosen uniformly
using function Randy,; as well as its neighbors inside its community while respecting the

max
wth

Randy,(S) returns an element of S selected uniformly and randomly.

3. Batch vertex insertion: This step iteratively adds vertices in the graph by batches of ran-
dom size until all the vertices generated at step 1 have been inserted. The set of remaining verti-
ces Vioaaq is first initialized (line 6, Algorithm Algorithm 1 in Table 2). Then, a batch of
vertices is randomly sampled from V;,4,4, (line 8, Algorithm Algorithm 1 in Table 2). For
each vertex in a batch, the community selection and the edge insertion described in steps 3.a.
and 3.b. are performed. Once all vertices in a batch have been inserted, community representa-
tives are updated (line 14, Algorithm Algorithm 1 in Table 2). It is performed by randomly
sampling NbRep vertices from each community C or |C| if the community contains less than
NbRep vertices.

3.a. Community selection: The community of a vertex is chosen either randomly or as a
function of its attributes and this choice depends on the parameter 6. When community mem-
bership is based on attributes that are not available, the community selection may seem sto-
chastic and this is modeled by the random choice (line 9, Algorithm Algorithm 1 in
Table 2). When the community selection is based on observed attributes, it respects the homo-
phily property P5 in such a way that the assignment to a community considers not only the av-
erage distance between the vertex and all the representatives of this community, but also its
distance with the most similar representative (line 10, Algorithm Algorithm 1 in Table 2).
The underlying assumption is that a single vertex can be more attractive than a set of vertices.
Thus, the vertex v is affected to the community C such that dist(v,C) is minimized where dist(v,

C) is defined by Z 5

constraint of maximum within edges given by E"%*. More precisely, given a set S, function

‘ )4 mln d(v,v'). Finally, the vertex is added to the selected community

C (line 12, Algorlthm Al gorlthm 1 in Table 2).

3.b. Edge insertion: The vertex is then connected to the other vertices with function A1go-
rithm 3 (line 11, Algorithm Algorithm 1 in Table 2). Its within degree (E,,;;,) and its be-
tween degree (E,;,) are firstly selected with the function Randp; according to a power law with
respect to the parameters E'¢* and E};** given by the user (lines 1 and 5, Algorithm A1go-
rithm 3 in Table 4). The function Randp;(m) returns a natural number belonging to {1,.. .,

m} randomly selected using the probability density function f : x— <&— E —- Then, the nelgh

i= 1

bors inside the community are chosen with the function Randgggews, in order to ensure the
local preferential attachment P1. The function Randgggew:(V) returns a vertex u from V ran-

. .- . . d
domly selected according to the probability density function f : u— Z"’i where deg(u) de-

Wev

notes the degree of vertex u. The other neighbors are selected with function Randgagepsy
among the representatives of the other communities in such a way that they are more likely

to be connected if they are similar to the vertex (cf. property P5). Indeed, the function
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Table 4. Algorithm 3.

Input: v, C

{Within edges}
1: E,,, — Randj, (min(| C |, E2))
2: while degy,(v) < Eyi, do
3. V' — Randeygewin(C\1€igwin(v))
4: & &u{{v,v'}}

{Between edges}
5: E,,, < Randy, (min(Ej& E,,,) +1) — 1
6: while degp (V) < Epyy, do
7. V'« Randg,,epy, (v, C%’C’.rep)

C'#C

8 &« &U{{v,v'}}

Algorithm 3

doi:10.1371/journal.pone.0122777.t004

Randggepi(v, V) returns a vertex u from V according to the probability density function
d(v,u)~?
fru— W
uev

4. Final edges insertion: The last step occurs only if the number of edges added at steps 2
and 3.b. does not reach MTE, the minimum number of edges in the resulting graph, fixed by
the user. As the edges are only inserted within communities, this step allows reinforcing the
community structure and increasing the average clustering coefficient (cf. P3). The insertion is
performed as follows. A vertex v is selected at random (line 17, Algorithm Algorithm1 in
Table 2) and an edge is inserted between two distinct neighbors of v in its community which
are not already connected (line 18-19, Algorithm Algorithm 1 in Table 2, where the set of
neighbors of v in its community is denoted neig,,;(v)). Several triangle closing models have
been proposed in [20]. In our model, we retained the random one as it has been demonstrated
in [20] that despite its simplicity, it gives good results.

This process is repeated until the graph contains at least MTE edges or until each communi-
ty forms a clique (line 16, Algorithm Algorithm 1 in Table 2). Indeed, the real maximum
number of edges corresponds to the case where each community is a clique. In that case given

a partition P, MTEis > ., W

Experimental results
Study of parameters impact

The aim of the first set of experiments is to demonstrate how, starting from a reference graph,
the parameters can be used to either weaken or strengthen the community structure. The refer-
ence graph is generated using the following parameters: K = 3, N = 1,000, A = {1,7}, 0 =0,
NbRep =100, E"e* = 6, E}** = 3, and MTE = 0. The degree distributions of the vertices in the
network (black dots) as well as within communities (colored dots) for the reference graph are
given in Fig 1.

In the following set of experiments unless stated otherwise the parameters used to generate
a graph correspond to those of the reference graph. The values of the measure plotted for dif-
ferent values of each parameter are the mean and standard deviation of the measure computed

on 10 generated graphs with the same setting.
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Fig 1. Vertices degree distribution in a graph generated using the reference parameter setting (log-log
scale).

doi:10.1371/journal.pone.0122777.g001

Community structure degradation. As mentioned in the introduction, the community
structure in an attributed graph relates to both the edges density and the attribute homogeneity
inside the communities. To degrade the community homogeneity, we ran experiments in vary-
ing the values of the parameter 6 which controls the probability to randomly assign a vertex to
a community. Table 5 and Fig 2 present homogeneity measures for different values of 6. As ex-
pected, the increasing within inertia and decreasing observed homophily (for a constant ex-
pected homophily equal to 0.6) indicate that the homogeneity property is weakened. This
behavior is also in agreement with the results presented in Fig 3 which plots the distribution in
IR? of the attribute values along two axis (one for each attribute). The higher the value of 6, the
more heterogeneous the communities are.

Table 5. Community homogeneity measures for 6 varying.

6=0 6=0.1 6=0.3 6=0.5 6=1
Observed homophily 0.86 0.84 0.81 0.78 0.73
Expected homophily 0.60 0.60 0.60 0.60 0.60
Within inertia 0.22 0.37 0.59 0.72 0.96

Community homogeneity measures for 6 varying

doi:10.1371/journal.pone.0122777.t005
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presented on the right side.

doi:10.1371/journal.pone.0122777.9002

In the aim to degrade the community structure in such a way to have a number of within
edges lower than the number of between edges, we performed experiments in varying the val-
ues of the parameter E}** which controls the maximum number of edges connecting a new ver-
tex to vertices out of its community. Table 6 presents several structural measures for
Er e {0,3,12} and E"4* = 14. As shown in Fig 4 presenting the corresponding graphs, the
number of edges between the communities increases. Fig 5 presents the average clustering coef-
ficient (left side) and the modularity (right side) for E}}%* ranging between 0 and 20 and E}* =

20 to respect E;i> < E™e*. As expected, these results indicate that the community structure is

degraded when parameter E}!** increases. One can also notice that even if the community

B.0=01 > D.0=03 >

Fig 3. Distribution of the vertices for different values of 8. Each point corresponds to the attribute values in R? of a vertex along two axis. Colors
correspond to communities. A. corresponds to 6 = 0. B. corresponds to 6=0.1. C. corresponds to 6 = 0.3. D. corresponds to 6 = 0.5.

doi:10.1371/journal.pone.0122777.9003
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Table 6. Structural measures for £/ varying and £"* = 14,

btw with

Ef>=0 Ef =3 (B = 1%

Modularity 0.66 0.59 0.57
Average clustering coefficient 0.12 0.09 0.08
Expected clustering coefficient 0.01 0.01 0.01
Average degree 6.02 6.45 6.56
Average shortest path - 4.06 3.98
Diameter = 8 9

Within Edges 3,010 2,986 3,002
Between Edges 0 238 279
Number of edges 3,010 3,224 3,281

Structural measures for EJ2 varying and Ej2* = 14

doi:10.1371/journal.pone.0122777 1006

structure is degraded, the obtained average clustering coefficient remains higher than the one
obtained in an Erds-Renyi random graph having the same number of vertices and edges (i.e.,
the random clustering coefficient measure).

Moreover, in experiments where the attributes and the relations are degraded, using a tun-
ing for the parameters 6 = 0.5, E;»** = 12 and E”¢* = 14, the measures confirm the degradation
both on the community homogeneity and community structure. In particular, regarding the at-
tribute homogeneity, the within inertia is 0.74 and the observed homophily is 0.81. For struc-
tural measures, the average clustering coefficient decreases to 0.08 and the modularity to 0.58.

Improving community structure. Opposite to the previous set of experiments, the com-
munity structure of the generated graphs can be improved compared to the reference graph.
However, as the community homogeneity is already high in the reference graph (i.e., § = 0), we
cannot improve it and we consider the community structure based on links. We increased the
number of within edges while keeping a fixed number of between edges. Two parameters allow

to control the number of within edges, E"¢* and MTE which correspond respectively to the

Fig 4. Example of graphs with generated varying £;".
doi:10.1371/journal.pone.0122777.9004
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between edges. The evolution of the average clustering coefficient is presented on the left side. The evolution of the modularity is presented on the right side.

doi:10.1371/journal.pone.0122777.g005

maximum number of edges connecting an inserted vertex to vertices in its community and the
minimum number of edges in the final graph.

Structural measures for increasing values of parameter E/’?* are presented in Table 7 for

Er e {6,10, 14,20} and Fig 6 for E"%* ranging between 2 and 30. The average clustering co-

wth wth
efficient and the modularity increase when E

"e* increases, which seems to indicate a stronger

wil
community structure. Unsurprisingly, the average shortest path length and the diameter are
also decreasing while the average degree is increasing when the number of edges grows.

Results presented in Fig 7 for increasing values of the parameter MTE show a similar behav-
ior regarding the modularity. However, the clustering coefficient reaches higher values for sim-
ilar numbers of edges. In particular, when E”# = 20, the number of edges is approximately

wth

4,000 and the average clustering coefficient is 0.15 in Table 7, while for MTE = 4000 it is 0.33 in

Table 7. Structural measures for £+ varying.

with

Modularity

Average clustering coefficient
Expected clustering coefficient
Average degree

Average shortest path
Diameter

Within Edges

Between Edges

Number of edges

Structural measures for EJj2* varying

doi:10.1371/journal.pone.0122777.t007

B =G Epe =10 B =4 Epe =20
0.56 0.58 0.59 0.60
0.03 0.06 0.09 0.15
0.00 0.01 0.01 0.01

4.49 5.67 6.45 8.18
4.62 4.27 4.06 3.90

11 9 8 8

2,037 2,610 2,986 3,862
210 223 238 230
2,247 2,833 3,224 4,092
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Fig 7. Consequently, it seems that parameter MTE improves more significantly the community

max
structure compared to parameter E7".

Scalability

This second set of experiments aims firstly at studying the impact of increasing the number of
vertices on the graph structure and secondly at studying runtime evolution.

To study the first aspect, we computed the average clustering coefficient on 10 graphs for
different values of the parameter N. Results are presented in Fig 8 and show that the average

0.7 T | . I 0.7 . , , ,
Clust. Coeff. ———
Rand. Clust. Coeff. e SR .

0.6 =1 0.6 N ;;Ff”"'%____}___:_ L T = -
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Fig 7. Evolution of structural measures for MTE varying. The evolution of the average clustering coefficient is presented on the left side. The evolution of
the modularity is presented on the right side.

doi:10.1371/journal.pone.0122777.9007
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Fig 8. Average clustering coefficient for varying N.

doi:10.1371/journal.pone.0122777.g008

clustering coefficient decreases when the graph size increases. This behavior is due to the edge
insertion process since the probability to add an edge which closes a triangle is lower for large
number of vertices. To maintain a high clustering coefficient, it is possible to increase parame-
ter MTE along with the number of vertices. Results where MTE = Nx10 for varying number of
vertices are presented in Fig 9. Using these parameters, the average clustering coefficient re-
mains relatively stable.

Runtime measures were computed using a standard computer running GNU/Linux with 8
Gb of main memory and an Intel™ Core i5 3.2GHz CPU. Fig 10 presents generation runtime
for different parameter settings starting with default parameters set as K= 3, N = 10,000, A =
{1,7}, 8 =0, NbRep = 100, EI"%* = 6, E;;> = 3, and MTE = 0. For each setting, only one parame-
ter is varied. The algorithm seems to scale linearly w.r.t. the parameters N, NbRep, and K. The
parameters E”%* and E}}** seems to have very little impact on runtime. Finally, the runtime
measure evolution in function of the parameter MTE increases by step and Fig 10 B. presents
one step for the first values of MTE. That is because most of the computation consists in find-
ing the edges which can be added and it does not depend on the value of parameter MTE.
These results indicate that the proposed approach is able to generate large graphs. In particular,

generating a graph having one million vertices requires 467 seconds.

Output, interface and evaluation criterion

Algorithm 1 is available at the url http://perso.univ-st-etienne.fr/largeron/ ANC_Generator/.
It is a free software distributed under the terms of the GNU General Public Licence (version 3). It
is implemented in Java and it can be executed on any platform with a Java virtual machine. A
screen copy of the user interface of the generator is presented in Fig 11. It is formed by three
views. On the left side, the user selects the generator parameters presented in Table 1. The
central part displays the generated graph using either a layout based on the graph structure

PLOS ONE | DOI:10.1371/journal.pone.0122777  April 20,2015 16/21
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doi:10.1371/journal.pone.0122777.g009

(e.g., Kamada-Kawai) or based on the attribute values for |.4| = 2. The right side of the interface
presents the measures corresponding to the generated graph.

« The difference between the expected and observed homophily allows to measure if similar
vertices according to the attributes tend to be more connected than dissimilar vertices (cf
P5);

The within inertia measures the dispersion of the attribute values inside the communities (cf.
P4). A low within inertia indicates that the communities are highly homogeneous with re-
gard to the attribute values;

« The modularity defined by Newman [45] (cf. P3);

The network average clustering coefficient is a measure of the clustering tendency of the net-
work (cf. P3). This observed value can be compared with an expected value computed on a
random graph having the same vertex set: an observed value higher than the expected value
confirms the community structure;

The average degree is the average number of neighbors of a vertex (cf. P1);

The average shortest path is the average minimum number of hops required to reach two ar-
bitrary vertices (cf. P2). It is not computed when the graph is formed by several disconnected
components (i.e., Eji= = 0);

o The diameter is the longest shortest path between any two vertices (cf. P2);

o The number of between edges and the number of within edges are respectively the number of
edges connecting vertices in the same community and the number of edges connecting verti-
ces in different communities (cf. P3);

o The number of edges in the graph, i.e., |£].
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Conclusion

In this article we proposed a network generator having a known community structure and
where vertices are associated with numeric attributes. This generator constructs graphs with
real networks properties both with respect to the structure, i.e., local preferential attachment,
small world property, community structure, and with respect to the attributes, i.e., homoge-
neous communities and homophily. Several parameters allow the user to control the structure
of the graph. We performed experiments to study how these parameters can impact the gener-
ated graph and demonstrated that they allow a degradation of the structure of the network on
the one hand, and the deterioration of the homogeneity of the communities on the other hand.
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doi:10.1371/journal.pone.0122777.g011

Regarding runtime, our generator is able to provide graphs having one million vertices. A pos-
sible extension of this work is to generate graphs where the attributes can be either numeric
or categoric.

Author Contributions

Conceived and designed the experiments: CL PNM ORZ. Performed the experiments: CL
PNM ORZ. Analyzed the data: CL PNM RR ORZ. Contributed reagents/materials/analysis
tools: CL PNM ORZ. Wrote the paper: CL PNM RR ORZ. Wrote code: PNM.

References

1.  Newman ME. Networks: An Introduction. Oxford University Press, Inc.; 2010

2. Fortunato S, Castellano C. Community structure in graphs. In: Computational Complexity, Springer;
2012.p. 490-512.

3. Orman GK, Labatut V. The effect of network realism on community detection algorithms. In: Internation-
al Conference on Advances in Social Networks Analysis and Mining. 2010. p. 301-305.

4. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algo-
rithms. Physical Review E. 2008; 78: 046110. doi: 10.1103/PhysRevE.78.046110

5. Lancichinetti A. Evaluating the performance of clustering algorithms in networks. In: Dynamics On and
Of Complex Networks, Springer, volume 2.2013. p. 143—-158.

6. Gustafsson M, Hérnquist M, Lombardi A. Comparison and validation of community structures in com-

plex networks. Physica A: Statistical Mechanics and its Applications. 2006; 367: 559-576. doi: 10.
1016/j.physa.2005.12.017

PLOS ONE | DOI:10.1371/journal.pone.0122777  April 20,2015

19/21


http://dx.doi.org/10.1103/PhysRevE.78.046110
http://dx.doi.org/10.1016/j.physa.2005.12.017
http://dx.doi.org/10.1016/j.physa.2005.12.017

@ PLOS | one

Generating Attributed Networks with Communities

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21,

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

Lancichinetti A, Fortunato S. Community detection algorithms: A comparative analysis. Physical Re-
view E. 2009; 80: 056117. doi: 10.1103/PhysRevE.80.056117

Orman GK, Labatut V, Cherifi H. Qualitative comparison of community detection algorithms. In: Interna-
tional Conference on Digital Information and Communication Technology and Its Applications. volume
167.2011. p. 265-279. doi: 10.1007/978-3-642-22027-2_23

Moussiades L, Vakali A. Benchmark graphs for the evaluation of clustering algorithms. In: International
Conference on Research Challenges in Information Science (RCIS). 2009. p. 197-206.

Zhou Y, Cheng H, Yu JX. Graph clustering based on structural/attribute similarities. Proceedings of the
VLDB Endowment (pVLDB) 2009; 2: 718-729. doi: 10.14778/1687627.1687709

McPherson M, Smith-Lovin L, Cook JM. Birds of a feather: Homophily in social networks. Annual Re-
view of Sociology. 2001; 27: 415-444. doi: 10.1146/annurev.soc.27.1.415

Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM. A survey of statistical network models. Found
Trends Mach Learn. 2010; 2: 129-233. doi: 10.1561/2200000005

Vazquez A. Growing network with local rules: Preferential attachment, clustering hierarchy, and degree
correlations. Physical Review E. 2003; 67: 056104. doi: 10.1103/PhysRevE.67.056104

Chakrabarti D, Faloutsos C. Graph mining: Laws, generators, and algorithms. ACM Computing Sur-
veys. 2006; 38: 1-78. doi: 10.1145/1132952.1132954

Newman ME, Watts DJ, Strogatz SH. Random graph models of social networks. Proceedings of the
National Academy of Sciences of the United States of America. 2002; 99: 2566—2572. doi: 10.1073/
pnas.012582999 PMID: 11875211

Erd&s P, Rényi A. On the evolution of random graphs. Publication of the mathematical institute of the
Hungarian academy of sciences. 1960; 5: 17-61.

Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Physical Review E.
2004; 69:026113. doi: 10.1103/PhysRevE.69.066133

Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998; 393: 440-442.
doi: 10.1038/30918 PMID: 9623998

Barabasi AL, Albert R. Emergence of scaling in random networks. Science. 1999; 286: 509-512. doi:
10.1126/science.286.5439.509 PMID: 10521342

Leskovec J, Backstrom L, Kumar R, Tomkins A. Microscopic evolution of social networks. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD). 2008. p. 462—
470.

Leskovec J, Kleinberg J, Faloutsos C. Graphs over time: densification laws, shrinking diameters and
possible explanations. In: ACM SIGKDD International Conference on Knowledge Discovery in Data
Mining (ICDM). 2005. p. 177-187.

Leskovec J, Kleinberg J, Faloutsos C. Graph evolution: Densification and shrinking diameters. ACM
Transactions on Knowledge Discovery from Data (TKDD). 2007; 1: 2. doi: 10.1145/1217299.1217301

Leskovec J, Chakrabarti D, Kleinberg J, Faloutsos C, Ghahramani Z. Kronecker graphs: An approach
to modeling networks. The Journal of Machine Learning Research. 2010; 11: 985—-1042.

Benson AR, Riquelme C, Schmit S. Learning multifractal structure in large networks. In: Proceedings of
the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).
2014.

Palla G, Lovsz L, Vicsek T. Multifractal network generator. Proceedings of the National Academy of Sci-
ences. 2010; 107: 7640-7645. doi: 10.1073/pnas.0912983107

Girvan M, Newman ME. Community structure in social and biological networks. Proceedings of the Na-
tional Academy of Sciences. 2002; 99: 7821-7826. doi: 10.1073/pnas.122653799

Lancichinetti A, Fortunato S. Benchmarks for testing community detection algorithms on directed and
weighted graphs with overlapping communities. Physical Review E. 2009; 80: 016118. doi: 10.1103/
PhysRevE.80.016118

Newman ME. The structure and function of complex networks. SIAM review. 2003; 45: 167-256. doi:
10.1137/S003614450342480

Orman GK, Labatut V. A comparison of community detection algorithms on artificial networks. In: Dis-
covery Science (DS). Springer. 2009. p. 242-256.

Orman GK, Labatut V, Cherifi H. Towards realistic artificial benchmark for community detection algo-
rithms evaluation. International Journal of Web Based Communities. 2013; 9: 349-370. doi: 10.1504/
IJWBC.2013.054908

Poncela J, Gémez-Gardefies J, Floria LM, Sanchez A, Moreno Y. Complex cooperative networks from
evolutionary preferential attachment. PLoS one. 2008; 3: e2449. doi: 10.1371/journal.pone.0002449
PMID: 18560601

PLOS ONE | DOI:10.1371/journal.pone.0122777  April 20,2015 20/21


http://dx.doi.org/10.1103/PhysRevE.80.056117
http://dx.doi.org/10.1007/978-3-642-22027-2_23
http://dx.doi.org/10.14778/1687627.1687709
http://dx.doi.org/10.1146/annurev.soc.27.1.415
http://dx.doi.org/10.1561/2200000005
http://dx.doi.org/10.1103/PhysRevE.67.056104
http://dx.doi.org/10.1145/1132952.1132954
http://dx.doi.org/10.1073/pnas.012582999
http://dx.doi.org/10.1073/pnas.012582999
http://www.ncbi.nlm.nih.gov/pubmed/11875211
http://dx.doi.org/10.1103/PhysRevE.69.066133
http://dx.doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
http://dx.doi.org/10.1126/science.286.5439.509
http://www.ncbi.nlm.nih.gov/pubmed/10521342
http://dx.doi.org/10.1145/1217299.1217301
http://dx.doi.org/10.1073/pnas.0912983107
http://dx.doi.org/10.1073/pnas.122653799
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1103/PhysRevE.80.016118
http://dx.doi.org/10.1137/S003614450342480
http://dx.doi.org/10.1504/IJWBC.2013.054908
http://dx.doi.org/10.1504/IJWBC.2013.054908
http://dx.doi.org/10.1371/journal.pone.0002449
http://www.ncbi.nlm.nih.gov/pubmed/18560601

@' PLOS ‘ ONE

Generating Attributed Networks with Communities

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.
44,

45.

46.

47.

Kolda TG, Pinar A, Plantenga T, Seshadhri C. A scalable generative graph model with community
structure. CoRR. 2013.

Seshadhri C, Kolda TG, Pinar A. Community structure and scale-free collections of erdés-rényi graphs.
Physical Review E. 2012; 85: 056109. doi: 10.1103/PhysRevE.85.056109

Kim M, Leskovec J. Multiplicative attribute graph model of real-world networks. Internet Mathematics.
2012; 8: 113-160. doi: 10.1080/15427951.2012.625257

Wong LH, Pattison P, Robins G. A spatial model for social networks. Physica A: Statistical Mechanics
and its Applications. 2006; 360: 99—120. doi: 10.1016/j.physa.2005.04.029

Gong NZ, Xu W, Huang L, Mittal P, Stefanov E, et al. Evolution of social-attribute networks: Measure-
ments, modeling, and implications using Google+. In: ACM Conference on Internet Measurement Con-
ference (IMC). ACM. 2012. p. 131-144.

Akoglu L, Faloutsos C. Rtg: a recursive realistic graph generator using random typing. Data Mining and
Knowledge Discovery (DMKD). 2009; 19: 194—-209. doi: 10.1007/s10618-009-0140-7

Dang TA. Analysis of Communities in Social Networks. Ph.D. thesis, Université Paris 13.2012

Yang J, McAuley J, Leskovec J. Community Detection in Networks with Node Attributes. IEEE 13th In-
ternational Conference on Data Mining. 2013. p. 1151-1156.

Palla K, Knowles DA, Ghahramani Z. An infinite latent attribute model for network data. In: Proceedings
of the 29th International Conference on Machine Learning (ICML). 2012. p. 1607-1614.

Albert R, Barabasi AL. Statistical mechanics of complex networks. Review of Modern Physics. 2002;
74:47-97.doi: 10.1103/RevModPhys.74.47

Lazarsfeld PF, Merton RK. Friendship as a social process: A substantive and methodological analysis.
Freedom and Control in Modern Society. 1954; 18: 18—66.

Milgram S. The small-world problem. Psychology Today. 1967; 2: 60-67.

Amaral LAN, Scala A, Barthélémy M, Stanley HE. Classes of small-world networks. Proceedings of the
National Academy of Sciences. 2000; 97: 11149—-11152. doi: 10.1073/pnas.200327197

Newman ME. Finding community structure in networks using the eigenvectors of matrices. Physical re-
view E. 2006; 74: 036104. doi: 10.1103/PhysRevE.74.036104

Easley D, Kleinberg J. Networks, Crowds and Markets: Reasoning about a Highly Connected World,
Cambridge University Press, chapter Networks in their Surrounding Contexts. 2010. p. 85-118.

Kaufman L, Rousseeuw P. Clustering by Means of Medoids. Reports of the Faculty of Mathematics
and Informatics. Faculty of Mathematics and Informatics. 1987.

PLOS ONE | DOI:10.1371/journal.pone.0122777  April 20,2015 21/21


http://dx.doi.org/10.1103/PhysRevE.85.056109
http://dx.doi.org/10.1080/15427951.2012.625257
http://dx.doi.org/10.1016/j.physa.2005.04.029
http://dx.doi.org/10.1007/s10618-009-0140-7
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1073/pnas.200327197
http://dx.doi.org/10.1103/PhysRevE.74.036104


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /All
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>



    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <>
    /PTB <>


    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>

    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


